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Summary

The Multivariate Normative Comparison (MNC) method has been used for identifying cognitive 

impairment. When participants’ cognitive brain domains are evaluated regularly, the longitudinal 

MNC (LMNC) has been introduced to correct for the inter-correlation among repeated 

assessments of multiple cognitive domains in the same participant. However, it may not be 

practical to wait until the end of study for diagnosis. For example, in participants of the 

Multicenter AIDS Cohort Study (MACS), cognitive functioning has been evaluated repeatedly for 

more than 35 years. Therefore, it is optimal to identify cognitive impairment at each assessment, 

while the family-wise error rate is controlled with unknown number of assessments in future. 

In this work, we propose to use the difference of consecutive LMNC test statistics to construct 

independent tests. Frequency modeling can help predict how many assessments each participant 

will have, so Bonferroni-type correction can be easily adapted. A Chi-squared test is used under 

the assumption of multivariate normality, and permutation test is proposed where this assumption 

is violated. We showed through simulation and the MACS data that our method controlled family-

wise error rate below a pre-determined level.
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1 | INTRODUCTION

This article concerns dynamic classification of cognitive impairment over time, which is 

motivated by the Multi-center AIDS Cohort Study (MACS) and of considerable general 

interest to neuroscience researchers in psychiatry and brain science fields. This approach to 

classification can further guide treatments to effectively prolong life expectancy and promote 

quality of life in persons living with HIV. Given normalized neuropsychological scores 

collected from a battery of tests across several cognitive brain domains, existing popular 

methods use t tests on each domain separately or count number of domains with abnormal 

scores. 1,2 These approaches fail to properly control family-wise error rate (FWER) by not 

taking inter-correlations among all brain domains into account. Here the type I error is 

defined in reference to the deviations from “normal” cognitive functions gathered from a 

large reference group of healthy controls.

Huizenga et al 3 introduced a method called the Multivariate Normative Comparison 

(MNC). The MNC statistic is a function of an overall distance between a subject’s 

multiple domain scores and the norms of the reference population. Then a test analogous 

to Hotelling’s multivariate T test is carried out to flag any abnormally large distance 

from normative scores. Under the assumption that cognitive brain domain scores follow 

a multivariate normal distribution, the MNC method will control FWER effectively at a pre-

determined level. Su et al 4 and Wang et al 5 have studied and demonstrated the effectiveness 

of the MNC with cross-sectional neuropsychological data collected among persons infected 

with HIV. Wang et al 6 further extended the MNC method from cross-sectional data to 

historically collected longitudinal data and proposed a Longitudinal Multivariate Normative 

Comparison (LMNC) method by modeling multiple neuropsychological scores with a 

multivariate linear mixed effects (MLME) model. Correlations among different brain 

domains and across all assessments within the same participant are explicitly considered 

within the model. A permutation procedure is also available when the model cannot 

sufficiently explain the data or the data are not normally distributed.

For research purposes, we often carry out analyses after all necessary information has been 

collected and then examine the data retrospectively. Thus, the static longitudinal MNC 

method in Wang et al 6 is adequate for providing classification of prior cognitive impairment 

with proper control of family-wise error. In clinical practice, this is probably not sufficient, 

particularly when treatment should be prescribed in the early stage of cognitive decline. 

Ideally, classification of impaired cognition should be done fluidly at each assessment. This 

will have practical use in Just-in-Time Adaptive Interventions (JITAIs) which track health 

status on mobile device. 7,8 Proper identification of departures from normal health can lead 

to effective treatments.

For an ongoing longitudinal study, the history of data provide useful insight into 

participants’ behaviors, such as how their cognitive functions change over time, how 

frequently they visit research centers, and how long they might survive. Assuming that 

we have collected sufficient data from the same or a similar cohort for an ongoing study, 

we can predict how many assessments each participant will have, using survival analysis 

and frequency modeling techniques such as Cox proportional hazard regression and Poisson 
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regression. Analogous to retrospective longitudinal data, MLME models 9 can be applied to 

prospectively collected data to capture dynamic changes in domain scores over time for each 

individual, while accounting for inter-correlations among various cognitive domains and 

repeated measures for the same participant. Longitudinal multivariate normative comparison 

(LMNC) statistics can be built from MLME estimations for each participant at every 

assessment. The proposed dynamic arrayed comparison (DAC) test is based on differences 

in two consecutive LMNC statistics, which are shown to be independent across assessments. 

This is key in constructing our test procedures for normally distributed data. When data do 

not follow multivariate normal distributions, we flexibly adapt permutation tests for dynamic 

classification, and then apply our proposed classification procedures to control family-wise 

error.

The proposed methodology will be detailed in Section 2. We will first formulate 

frequency prediction and MLME models, and then construct test statistics for DAC with 

the Bonferroni-type adaptive procedure. In Section 3, numerical studies will be carried 

out to examine the performance of the proposed method. Applications of DAC to a 

neuropsychological substudy in the MACS are shown in Section 4. We conclude with 

discussion of DAC performance and future directions.

2 | FAMILY-WISE ERROR CONTROLLING PROCEDURES

2.1 | Dynamic Arrayed Comparisons Based on χ2

Before identifying cognitive impairment prospectively, we assume that relevant population 

normative data are available. Following the notation from Wang et al, 6 n participants 

enrolled in a healthy reference group and were evaluated on q cognitive domains over mi 

assessments. Cognitive domain j is measured as Yijk, i = 1, …, n; j = 1, …, q; k = 1, …, 

mi for participant i at k-th assessment. A multivariate normal distribution is assumed on 

cognitive scores since they are generally normalized in practice. Within the same participant, 

the MLME model is used for cognitive functions from different domains over time with a 

covariance structure capturing dependence among cognitive domains and repeated measures 

at different assessments. Thus we have:

Y ijk = βj0 + βj1tik + βj2tik2 + βj3tik3 + vij + δik + ϵijk . (1)

Here we use q polynomial functions of degree 3 to characterize the mean cognitive 

scores over time. If desired, polynomials with a higher degree can be added. The B-spline 

technique, besides polynomial, can also approximate the true average cognitive scores over 

time. 10,11,12,13,14 We assume ϵijk, representing random error from each observation, to be 

independent and identically distributed following normal N (0, σ2). We also assume δik, 

which are errors specific for each assessment, to follow independent and identical normal 

N (0, θ2), since the variances and covariances are generally stable over time in MACS. 

Due to the inter-correlations among various cognitive domains for the same participant, 

vi = vi1, …, viq
⊤ is assumed to follow multivariate normal N(0, Σ , where Σ = ρsr , s, r 

= 1, …, q. For the MACS domain data, we assume a compound symmetric structure, 

since the covariances between two different domains from two different assessments are 
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almost always around 20, except for three outliers (two 5’s and one 50). The structure of 

covariance matrix depends on research designs and data collected, and can be unspecified, 

auto-regressive, compound symmetric, or follow other complicated structures such as the 

Damped Exponential Correlation. 15 If the outcomes are viral loads, CD4 counts, and other 

highly variable variables, more flexible models 15 should be considered.

Fang et al 16 and Fieuws 17 provided estimation procedures used to estimate unknown 

parameters from the MLME model. Estimated parameters are denoted as β j0, β j1, β j2, β j3, 

j = 1, …, q, ρsr, s, r = 1, …, q, θ2 and σ2. Assuming participant d is tested, we take all q 

cognitive scores observed over md assessments, and stack them into md vectors

Uω
d = Y d11, …, Y dq1, Y d12, …, Y dq2, …, Y d1ω, …, Y dqω

⊤, ω = 1, …, md . (2)

From the MLME model in (1), the estimated mean vector of Uω
d  is written as 

μω
d = β10 + β11td1 + β12td1

2 + β13td1
3 , β20 + β21td1

+ β22td1
2 + β23td1

3 , …, βq0 + βq1td1 + βq2td1
2 + βq3td1

3 , …, β10 + β11tdω + β12tdω
2 + β13tdω

3 , …, βq0 + βq1tdω + βq2tdω
2 + βq3tdω

3 ⊤

of length qω. Moreover, from the covariance matrix specified in this model, we can estimate 

the covariance matrix for Uω
d  as Ψω

d = τsr , s, r = 1, …, qω. Each element in Ψω
d  corresponds 

to the covariance between a pair Y dj1k1 and Y dj2k2, which can be estimated as 

ρj1j2 + θ2⫿ k1 = k2 + σ2⫿ j1 = j2, k1 = k2 , with domain indices 1 ≤ j1, j2≤ q, assessment 

indices 1 ≤ k1, k2≤ ω and indicator functions ⫿ ⋅ .

Under the multivariate normal assumption on the q longitudinal cognitive functioning 

scores, Wang et al6 proposed a LMNC test statistic for participant d at assessment ω as

Gω
d = Uω

d − μω
d ⊤ Ψω

d −1
Uω

d − μω
d ∼ χqω2 , ω = 1, …, md, (3)

and used it to classify prior impairment status on retrospectively collected data. In order 

to identify cognitive impairment at each assessment ω, we create DAC test statistics as 

the difference between two consecutive LMNC test statistics and set Sω
d = Gω

d − Gω − 1
d  for 

2 ≤ ω ≤ md and S1
d = G1

d. We can show below that they are independent from each other. 

Without loss of generality denote Xω = Uω − μω = Xω − 1
⊤ , W ω

⊤ ⊤
 for ω ≥ 2 and X1 = W 1. 

The covariance matrix of Xω is

Ψω =
Ψω − 1 Δω

ΔωT Φω
, ω ≥ 2,

with Ψ1 = Φ1. Then for ω ≥ 2,
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Sω = Gω − Gω − 1
= Xω⊤Ψω−1Xω − Xω − 1

⊤ Ψω − 1
−1 Xω − 1

= Xω − 1
⊤ Ψω − 1

−1 ΔωΘω−1Δω⊤Ψω − 1
−1 Xω − 1 − 2Xω − 1

⊤ Ψω − 1
−1 ΔωΘω−1W ω + W ω⊤Θω−1W ω,

where Θω = Φω − Δω
⊤Ψω − 1

−1 Δω. We also know from properties of multivariate normal 

distributions that Xω − 1, with covariance Ψω − 1,, and W ω − Δω
⊤Ψω − 1

−1 Xω − 1, with covariance 

Θω, are independent. Therefore,

Sω = Xω − 1
⊤ Ψω − 1

−1 ΔωΘω−1Δω⊤Ψω − 1
−1 Xω − 1 − 2Xω − 1

⊤ Ψω − 1
−1 ΔωΘω−1W ω + W ω⊤Θω−1W ω

= W ω − Δω⊤Ψω − 1
−1 Xω − 1

⊤
Θω−1 W ω − Δω⊤Ψω − 1

−1 Xω − 1 ∼ χq2 .

As a result, we can claim DAC test statistics within Sω
d , ω = 1, …, md  are independent.

If md is known, we can construct visit-by-visit testing procedures easily and apply 

Bonferroni or other procedures to control FWER. In order to identify cognitive impairment 

for participant d at assessment ω, we will use 1 − 2αωd  quantile of χq2 as the threshold 

to control the overall significance level α while 1qω
⊤ Xω

d < 1q(ω − 1)
⊤ Xω − 1

d  when ω > 1 or 

1q
⊤X1

d < 0 when ω = 1, since we are interested in screening impairment, i.e., cognitive scores 

that are largely lower than the means. However, md is generally unknown for a prospective 

study. We will address it in the following section.

2.2 | Frequency Prediction

Given that we have observed some data with respect to our population of interest in an 

ongoing study, the difficulty of unknown md can be addressed by using some frequency 

model to estimate the expected number of assessments each patient will have based on 

their baseline characteristics and historical data H. One may first use a survival modeling 

approach to predict the mean residual lifetime (T ) of each patient and then use Poisson 

regression to predict the frequency of visiting during a unit of time (Λ). For example, we 

assume that the survival time follows a proportional hazards model

λ t ∣ Z1 = λ0(t)exp β⊤Z1 , (4)

and that the number of assessments per time unit follows a log-linear model

log Λ ∣ Z2 = γ0 + γ1
⊤Z2, (5)

though other proper models may be used, where covariate vectors Z1 and Z2 can be 

completely different or have overlapping predictors. Commonly used techniques like 

(partial) maximum likelihood estimation can be used to obtain the estimates β, γ0 and γ1, 

and the Nelson-Aalen type estimator can be computed for λ0(t). As a result, the product of 

the expected survival time
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T i = ∫ exp −Λ0(t)eβ⊤Z1i dt

and the expected frequency at a unit of time

Λi = exp γ0 + γ1
⊤Z2i

can be used to predict the number of assessments, i.e., Ni = T iΛi for participant i. We 

assume Ni is an unbiased estimator for participant’s expected number of future visits. The 

nearest integer greater than Ni is used if the prediction is a decimal number and it is 

denoted by ⎡ Ni ⎤ Based on the estimated expected number of assessments, we propose a 

Bonferroni-type adaptive procedure on controlling family-wise errors.

2.3 | Bonferroni-type Adaptive Procedure

Bonferroni procedure seems to be a natural choice in controlling family-wise error with 

expected number of assessments known. 18,19,20 If a uniform 1
⎡ N ⎤ i

α is applied to every 

assessment, the participants who have fewer assessments than expected will have a much 

smaller family wise error than those who have more assessments than expected. Therefore, 

we propose a new procedure to control FWER, where participants who visit the clinic 

more than expected will be subject to more stringent testing. We define Mi to be the 

actual number of assessments for participant i, which is unknown at the beginning of the 

study. For participant i at any assessment 1 ≤ j ≤ Mi, if j ≤ ⎡ Ni ⎤ the p value at this 

visit is compared with 
C ⎡ Ni ⎤ − j + 1

⎡ Ni ⎤
2 α When j > ⎡ Ni ⎤, the p value is compared 

with C
⎡ Ni ⎤

2α. C is chosen to be 
2c ⎡ Ni ⎤

2

⎡ Ni ⎤ ⎡ Ni ⎤ + 1
. When c = 1 and under the null 

hypothesis H0 that the participant being tested is not impaired cognitively at any visit, we 

have
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P  classified cognitive impairment during the study  ∣ Z1i, Z2i, H0, HS

= 1 − ∏
j = 1

∞
1 − P  classified cognitive impairment at visit j ∣ Z1i, Z2i, H0, HS

= 1 − E ∑
j = 1

Mi
1 − α

C ⎡ Ni ⎤ − j + 1

⎡ Ni ⎤
2 ⫿ j ≤ ⎡ Ni ⎤ + C

⎡ Ni ⎤
2 ⫿ j > ⎡ Ni ⎤ ∣ Z1i, Z2i, H0,

HS

≤ E ∑
j = 1

Mi
α

C ⎡ Ni ⎤ − j + 1

⎡ Ni ⎤
2 ⫿ j ≤ ⎡ Ni ⎤ + C

⎡ Ni ⎤
2 ⫿ j > ⎡ Ni ⎤ ∣ Z1i, Z2i, H0, HS

≤ αE
C ⎡ Ni ⎤ ⎡ Ni ⎤ + 1

2 ⎡ Ni ⎤
2 +

C Mi − ⎡ Ni ⎤

⎡ Ni ⎤
2 I Mi > ⎡ Ni ⎤ ∣ Z1i, Z2i, H0, HS

≤ α,

where ⫿(·) is an indicator function. The first equation is valid because of the independence 

of DAC test statistics. The second equality holds since subject i only visits Mi 

times and the probability of committing a type I error at visit j is determined by 

the proposed adaptive procedure depending on whether j falls before or after the 

predicted number of visits ⎡ Ni ⎤. The following inequality holds because of Jensen’s 

inequality and the last inequality holds since C is chosen to be the reciprocal of 

∑j = 1
⎡Ni⎤ ⎡ Ni ⎤ − j + 1

⎡ Ni ⎤
2 =

⎡ Ni ⎤ ⎡ Ni ⎤ + 1

2 ⎡ Ni ⎤
2 , and ⎡ Ni ⎤ is assumed to be unbiased, 

i.e., E ⎡ Ni ⎤ − Mi = 0. We can choose c adaptively to be a number greater than 1 to 

improve power while keeping FWER strictly controlled. However, if the number of visits 

is small, the loss of power under independent tests is expected to be small even with c = 

1. Alternatively, we can also replace expected mean survival T i with median survival time, 

which is supposedly smaller as a survival time distribution is often right skewed. The median 

survival time is easier to estimate and will tend to have less stringent family-wise error while 

controlled at a pre-determined level.

2.4 | Permutation Test

Generally, it can be hard to justify a multivariate normal distribution for recorded data and 

the testing procedure may fail to follow a χ2 distribution. Intuitively, the test statistic still 

measures the incremental departure from the norm at the current visit as compared to the 

previous visit, though there is no known distribution that we can use to find thresholds 

for abnormality. Here, we propose an innovative use of bootstrapping and permutation to 

obtain a series of critical values for the test statistics over time, when we cannot assume 

multivariate normality.

First, we bootstrap B (i.e. 10,000) participants from the study with replacement. For the b-th 

bootstrapped participant with Mb visits, we will remove the time effect obtained from model 

(3) (i.e. β j0 + β j1tbk + β j2tbk
2 + β j3tbk

3 ) to obtain participant-specific errors over Mb visits. 
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Under the assumption that the covariance matrix Σ = ρsr , s, r = 1, …, q characterizing 

cognitive domains follows a compound symmetry structure, we can permute the errors in 

the following way without disrupting the covariance structure. We first rearrange the errors 

as a matrix with Mb rows representing all visits and q columns representing all cognitive 

domains. We then permute the columns in whole. If the compound symmetry is not proper 

for the data of interest, this column permutation step could be skipped. Next, we permute the 

rows in whole to preserve the assumed structure.

Then, based on the permuted errors, we obtain an error vector as

V b = Eb11, …, Ebq1, Eb12, …, Ebq2, …, Eb1Mb, …, EbqMb
⊤ .

The DAC test statistics can be calculated as Sω
b Eb1ω, …, Ebqω

⊤1qm < 0 , ω = 1, …, Mb

without assuming any specific error distributions. Pooling them together after B bootstraps, 

we can calculate any empirical proportion of impairment α0 based on the predicted number 

of visits from models (4) and (5). The corresponding (1 − α0) quantile may serve as a 

critical value. Participant d at the ω-th visit will be identified as cognitively impaired if this 

visit-specific test statistic exceeds this critical value while 1qω
⊤ Xω

d < 1q(ω − 1)
⊤ Xω − 1

d  when ω > 

1 or 1q
⊤X1

d < 0.

As we have described in Section 2.3, the factor c, which is used to control how much we can 

spend α, can be set at 1 under multivariate normal distributions, because the independence 

of the tests guarantees the loss of power is small. However, this independence becomes 

questionable when the multivariate normal distribution cannot be justified. As a result, c 
should be adjusted to preserve power while controlling family-wise errors. Cross-validation 

(CV) can be used here to determine an appropriate c value. We first randomly divide the 

healthy reference group by several CV sets. For each set, we apply the MLME model to 

the remaining participants and calculate DAC test statistics for this fold. Then permutation 

test statistics are built from the healthy reference group leaving out the fold to be tested. 

Putting the DAC test statistics together with their corresponding permutation test statistics, 

an iterative process is used to determine an appropriate c value such that the FWER is 

controlled just around the pre-determined α level.

3 | NUMERICAL STUDIES

Here, we ran some simulation studies to assess how the proposed DAC method works under 

various distribution assumptions. As described in Section 4, the MACS study regularly 

evaluates six cognitive domains, we also considered q = 6 cognitive domains in our 

simulations. First, longitudinal multivariate data were generated with various forms of 

mean score functions over time. When a multivariate normal distribution was assumed, 

the DAC testing procedure based on χ2 was evaluated for its FWER over various levels of 

α. Otherwise, the permutation testing procedure was used to evaluate DAC. Multivariate t 
and Gamma distributions were considered for non-normal errors with heavier tails or skew, 

similar to Wang et al. 6
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Specifically, for these simulations we assumed 1,000 participants with cognitive functioning 

tested in the past would serve as historical healthy controls. At the same time, we generated 

longitudinal scores for 1,000 additional participants as the testing group assuming they 

would enroll in future. For each participant in the healthy control and testing groups, we 

first simulated their enrollment time uniformly over 20 years. Their survival time follows a 

Weibull distribution with five covariates,

log(T ) = β0 + ∑
i = 1

5
βizi + σW ,

where W was generated from the standard extreme value distribution, and covariates were 

independently generated with z1-z4 from the standard normal distribution and z5 from a 

uniform (0,1) distribution. Participants were assumed to be censored at year 20 for both 

the historical and newer cohorts. Based on the simulated duration in the study, each 

subject’s visit times were generated such that the time between two assessments follows 

an independent exponential distribution with the first visit happening at time 0. The hazard 

rate of the exponential was determined by Poisson regression from equation (5). We used 

the same five covariates and set γ0 = 0, γ1 = γ2 = γ3 = γ4 = 0.1, and γ5 = −0.1, yielding 

a median of 8 visits. At all the visit times, 6 cognitive domain scores were generated from 

different multivariate distributions as detailed in the subsections. One thousand simulations 

were carried out for each scenario.

In practice, the study duration and visit frequency of an ongoing study may differ 

from its historical cohort. Therefore, we examined various scenarios where the duration 

of the prospective study changes or when participants visit the study more and less 

frequently. FWER and power were examined under the null and the alternative, respectively. 

Meanwhile, as mentioned in Section 2.4, it’s important to determine an appropriate c value 

to relax the thresholds and to preserve power. The relationship between c and the FWER and 

power was also investigated. The details of each simulation and results are described below.

3.1 | Multivariate Normal Distribution

After obtaining the number of assessments mi for participant i based on their duration and 

visit times, we generated six domain scores from the multivariate normal distribution at each 

visit. For the covariance matrix Umi
i , we set σ2 = 30, θ2 = 10, ρsr = 60, for s = r, and ρsr = 15, 

for s ≠ r with s, r = 1, …, 6. That is, covariance of different cognitive domains at the same 

visit is θ2 + ρ12 = 25, covariance of the same cognitive domains at different visits is ρ11 = 

60, and the rest elements are ρ12 = 15.

Four forms of polynomial mean trends were considered. For the constant trend, all six 

cognitive domains were assumed to have mean of 50 at any given t. For the linear trend, 

the first three cognitive domains were set to have means of 50 − 0.6t, and the other three 

had means of 50 − 0.8t. For the quadratic trend, the first three cognitive domains were set 

to have means of 50 − 0.08t2 + 0.2t, and the other three to have means of 50 − 0.06t2 

+ 0.1t. Lastly, for the cubic trend, the first three were set to have means of 50 − 0.008t3 
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+ 0.08t2 + 0.55t and the rest to have means 50 − 0.007t3 + 0.06t2 + 0.55t, similar to the 

settings in Wang et al. 6 The mvrnorm from the R library MASS was then used to simulate 

longitudinal cognitive errors following the multivariate normal distribution with means 0 

and the covariance matrix Umi
i . The mean polynomial functions mentioned above were then 

added to the errors to represent the generated longitudinal cognitive scores.

The lmer from the library lme4, the coxph from the library survival, and the glm were 

used to implement models (1), (4) and (5). We adopt cubic polynomial functions for mean 

scores in the MLME, pretending that the true polynomial functions are unknown. At various 

levels of α (from 0.001 to 0.1), χ2 tests were conducted for each simulated participant in 

the newer cohort. For the purpose of comparison, we also implemented the permutation 

test here. Results based on 1,000 simulations are summarized in Figure 1. As the results 

for all four mean trends are almost identical, we only include the result under the cubic 

mean trend. The estimated FWER from the χ2 test is denoted by the black solid line, the 

one from the permutation test is given by the black dash line, and the nominal α level is 

denoted by the gray broken line. The DAC χ2 test and the permutation test seem to perform 

equally well, both successfully controlling FWERs below pre-determined levels for all mean 

trend functions, when domain scores follow multivariate normal distributions and we can 

correctly model the visit frequency and multiple longitudinal domain scores. As expected, 

the departures of the FWERs from the nominal levels are small. The FWERs of four mean 

functions are all around 0.046 when α = 0.05.

3.2 | Multivariate t and Gamma Distribution

In practice, real data may present skewness and heavy tails, which do not follow multivariate 

normal distributions. Thus, we considered two sets of non-normal errors here. One set 

follows multivariate t distributions for heavy tails, and the other presents negative skewness 

from correlated Gamma distributions. The same four mean trends from Section 3.1 are used 

here.

To simulate longitudinal scores with heavy tails, multivariate t distributions with 5, 25 and 

50 degrees of freedom were used. The rmt from the library csampling was used for 

multivariate t random error generation. Means of the random errors were set to 0, and the 

covariance matrix used here is the same as Umi
i  from Section 3.1. The four polynomial score 

trends were then added to the generated errors as the observed longitudinal scores.

To simulate longitudinal scores with negative skew, gamma distributions were used. Again 

a compound symmetric covariance structure was considered by transforming longitudinal 

multivariate normal errors to get correlated gamma errors. We first simulated multivariate 

standard normal errors ςijk, j = 1, …, 6, k = 1, …, mi with means 0 and covariance Umi
i /100

from Section 3.1. Three gamma distribution designs were considered. The first one took 

transformation of 70 − Γ−1 Φ ςijk , where Γ  is the cumulative distribution function (CDF) 

of the gamma distribution with shape of 4 and scale of 5 and Φ is the CDF of the standard 

normal distribution. For the second design, we used 100 − Γ−1 Φ ςijk  as our negative 
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skewed errors, where Γ  has shape of 25 and scale of 2. We calculated 150 − Γ−1 Φ ςijk  for 

the third design, where Γ  has shape of 100 and scale of 1. Each score error has mean of 0 

and variance of 100. The four polynomial mean trends were again added to the generated 

scores to represent measured longitudinal domain scores with negative skew.

For each setting, survival time and visit frequency were generated in the same way as 

mentioned at the beginning of Section 3. We assumed 1,000 participants had been measured 

in the historical healthy control group, while 1,000 more participants were going to enroll in 

the new study and get tested. As described in Section 2.4, the proposed permutation test was 

used here. We bootstrapped 10,000 participants with replacement from the historical healthy 

control group. For each selected participant, we obtained longitudinal errors by subtracting 

the estimated means from the original scores. Then we rearranged the errors, added back 

the longitudinal mean scores, and computed a series of DAC test statistics. After repeating 

10,000 times, visit-by-visit classification of cognitive impairment is performed for the newer 

cohort with corresponding quantiles from these permutation test statistics as the thresholds. 

The results of FWER at various α levels after 1,000 simulations from multivariate t and 

correlated gamma distributions are summarized in Figure 2. As a comparison, results from 

the DAC χ2 tests are also shown in the figures. Figure 2 is under the cubic mean trend, other 

three mean trends are omitted as they are similar.

As shown in Figure 2, the FWERs from the DAC χ2 test can be greatly inflated when 

multivariate normality does not hold. Illustrated by the black curves, FWER inflation is 

smaller when the multivariate t distribution has less heavier tails or when the gamma 

distribution is less skewed. When the permutation test is used, FWERs are controlled at 

any pre-specified α level and noticeably smaller at larger α values. This conservativeness 

has also been observed by other work. 21 We can relax the thresholds by increasing the 

factor c through CV as described in Section 2.4, so that FWER is adjusted around the 

pre-determined level. In Section 3.4, we will discuss how we can adjust the value of c when 

performing power analysis.

3.3 | Impact of mis-specified visit prediction on FWER

Both the χ2 and permutation tests rely on the predicted number of visits. In this section, 

we evaluate the impact of mis-specified visit prediction on FWER. Caudill and Mixon 22 

proposed a censored Poisson regression model (CPR) for right-censored count data, and 

Famoye and Wang 23 proposed a censored generalized Poisson regression model (CGPR) 

with an extra dispersion parameter. The performance of these two single models was 

assessed relative to the two-model approach discussed in Section 2.2. We first compared the 

predicted number of assessments using these three methods and then evaluated the resulting 

FWER from the χ2 and permutation tests based on the three predicted numbers.

Specifically, we calculated the mean differences between the estimated numbers of 

assessments using the three methods and the true observed numbers in each simulated 

dataset of the 1000 simulations, adopting the same setting as described in Section For the 

two Poisson models, we used the logarithm of of the simulated event time as an offset. The 
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results are given in Figure 3 and Table 1, which show that the two-model method has the 

best performance among the three methods.

Next, under the same settings as in Section 3.1, we calculated FWER for the χ2 test and the 

permutation test at a range of α’s, using the predicted number of visits from the censored 

Poisson regression model and the two-model method. The results from the generalized 

Poisson model are similar and not illustrated here. Figure 4 displays the resulting FWER and 

shows that the one calculated using the two-model method is slightly closer to α compared 

to that using the censored Poisson regression model.

We then evaluated how the DAC χ2 and permutation tests perform when the proportional 

hazards (PH) survival model or the Poisson frequency model or both are mis-specified 

in predicting the number of visits. The simulations setting is the same as that in Section 

3.1 expect for the generation of visit numbers for each individual. In this new setting, 

we generated the survival times from a log-logistic model: log(T ) = β0 + ∑i = 1
5 βizi + σW , 

where W follows the standard logistic distribution. As this model has the proportional 

odds interpretation, we refer to it as the PO model. We generated the gap times 

between two adjacent assessments for subject i from a gamma-exponential distribution 

Exp(riΛi) to account for overdispersion, where ri ∼ Gamma(δ−1, δ−1). We set δ = 1 and 

Λi = exp γ0 + γ1
TZ2i . The resulting number of visits by time t follows a Negative-Binomial 

process: NB δ−1,
Λit

δ−1 + Λit
, according to McShane et al. 24 Since E(Yi(t)) = Λit and 

Var(Yi(t)) = Λit + δ(Λit)2, δ can be interpreted as the overdispersion parameter.

We then calculated the differences between the estimated numbers of assessments using 

the proposed two-model approach and the true simulated numbers under four different 

scenarios: PH survival and Poisson frequency models, PH survival and NB frequency 

models, PO survival and Poisson frequency models, and PO survival and NB frequency 

models. The results are summarized in Table 2. When the survival time is generated from a 

PO model while a PH model is used in prediction, the differences seem to be close to those 

when the numbers of visits are generated from a Weibull (PH) survival model and a Poisson 

frequency model. In contrast, when the frequency follows a NB model but is mis-fit with a 

Poisson model, we observe larger differences between the predicted numbers and the true 

simulated numbers. When both survival and frequency models are mis-specified, the effect 

seems to be dominated by the mis-specification of the frequency model. Figure 5 displays 

the FWER from the χ2 test at a range of α’s under these four scenarios. Consistent with 

what we have observed in Table 2, the mis-specification of survival models has a minimal 

effect on FWER, and ignoring overdispersion in the frequency data leads to somewhat more 

conservative FWER. Not shown here, the mis-specification in the prediction models has 

a similar effect on the permutation test. Overall, the proposed procedures appear robust 

against the mis-specification of survival models and frequency models. We thus use the 

two-model approach in all the subsequent analyses.
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3.4 | Different Number of Visits and Power Analysis

In practice, multivariate normality is often violated with collected measurements. In addition 

duration and visit frequency of a future study may differ from historical ones. For example, 

in the MACS study, there were several enrollment waves over time and the MACS proposed 

some study design changes in mid-2000 so participants started to visit the centers less 

frequently than in 1990’s. Thus, in this subsection, we examined how the FWER and 

power of the proposed DAC methods may be affected by different study duration and visit 

frequencies in the newer testing cohort. Five different designs were evaluated for the testing 

group by changing the study duration (survival distributions remained the same as in the 

previous two subsections) and the visit frequencies through Poisson regression parameters. 

For the historical healthy control group, the survival time and visit frequency remain the 

same as in the previous two subsections. The distributions of five covariates remain the same 

as well. Below detail the five settings for the newer cohort:

1. Original: In the Weibull model used for survival time, we set β0 = 3, β1 = β2 = 

β3 = β4 = 0.2, β5 = −0.2 and σ = 0.1. Participants were set to enroll uniformly 

until the study ended in 20 years. In the Poisson model used for assessment 

intensity Λ, we set γ0 = 0, γ1 = γ2 = γ3 = γ4 = 0.1, and γ5 = −0.1. The median 

number of visits is 8.

2. Shorter Study: Same as setting (1), except that we ended the study in 10 years. 

The median number of visits is 4.

3. Longer Study: Same as setting (1), except that we ended the study in 30 years. 

The median number of visits is 10.

4. Less Visits: Same as setting (1), except that we divided the visit intensity Λ by 2. 

The median number of visits is 4.

5. More Visits: Same as setting (1), except that we multiplied the visit intensity Λ 
by 2. The median number of visits is 16.

The multivariate t with 5 degrees of freedom was used here to generate longitudinal scores 

in the historical healthy control group and in the testing group from the prospective study. 

For both groups under the null, the setup is the same as in Section 3.1. We first simulated 

the number of visits based on each scenario of survival and assessment frequency. Then we 

generated multivariate t errors and added with quadratic mean trends from Section 3.1. For 

the testing group under the alternative, the setup is the same except for mean trends. We 

specified first three cognitive domains to have means 20 – 0.08t2, and the other three to have 

means 50 – 0.1t2. One thousand participants were assumed to have enrolled in the historical 

study, and 1,000 participants were expected to enroll in the new study. As mentioned in 

Section 2.4 and shown in Figure 2, the FWER is conservative with the permutation test, and 

CV can be used to determine an appropriate factor c to increase the thresholds. After 5-fold 

CV on 1,000 simulations, we determined that c = 2.0 for the new study under the original 

study design. In predicting the number of assessments within the newer study, we assumed 

that we had known policy changes such as when the study ended and how the frequency of 

visits changed. The results of FWER and power from the permutation test (10,000 times) 

after 1,000 simulations under five cases are shown in Figure 6.
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As illustrated in Figure 6, different study duration or assessment frequencies have an impact 

on FWER and power. Fewer visits in the newer study, from a shorter study period or lower 

visit requirements, seem to have inflated FWER and larger power. However, the FWER 

inflation is in general small and cases (2)-(5) are quite different from case (1). Thus, it 

remains important to make sure the visit frequency does not deviate too much from the 

historical study. At the same time, the factor c used to relax the thresholds can be increased 

or reduced slightly based on researchers’ understanding of how study policy changes the 

assessment frequency for the future study.

4 | APPLICATION TO THE MULTICENTER AIDS COHORT STUDY

Here, the proposed DAC method was applied to the neuropsychological (NP) sub-study data 

collected through 2017 from the Multicenter AIDS Cohort Study (MACS) which began in 

1984 and merged with the WIHS to become the MWCCS on 4/1/2019. The MACS has 

been administered by Johns Hopkins University, Northwestern University, The University of 

California at Los Angeles, and the University of Pittsburgh. 25,26 More than 7,000 men who 

have sex with men (MSM) have been recruited in the study. Participants were either infected 

with HIV or at risk for infection at enrollment. They have been regularly interviewed 

and examined on a wide range of variables, such as drug use, depressive symptoms, age, 

sexual disorder, cognitive functioning, and physical measurements. Participants’ cognitive 

functioning is negatively impacted by HIV infection. However, highly active antiretroviral 

therapy (HAART) was found to have positive effects on cognitive functioning among people 

infected with HIV since its first availability in early 1990’s. Participants in the NP substudy 

have been regularly evaluated with a NP test battery for six cognitive domains, including 

motor speed & coordination, speed of information processing, executive functioning, 

learning, memory, and working memory & attention. 27,28 These test scores provide a rare 

opportunity to assess, in the HAART era, how those infected with HIV and those without the 

infection differ in cognitive decline over time.

The MACS has four enrollment waves starting at 1984, 1987, 2001 and 2010. We took 

the first two pre-HAART cohorts as our historical data, and used data from the two more 

recent enrollment cohorts prospectively to examine how cognitive impairment is developing 

over time after HARRT. During each NP visit, a battery of tests was carried out, and 

collected scores were summarized by T-scores, which were computed from regression 

models adjusting for ethnicity, education, age, and the number of tests administered. The 

T-scores have means of 50 and standard deviations of 10. For motor speed & coordination, 

the lowest T score is used for summary, while the other five use the arithmetic means of all 

T-scores in each specific domain as summary T-scores. The multivariate normal distribution 

assumption on the NP data from the MACS is of concern, because the summary T-score in 

motor speed & coordination is very skewed. Consequently, the permutation test should work 

better for identifying cognitive impairment with FWER controlled at a pre-specified level.

For this analysis, only participants with complete scores on six cognitive domains were 

included. We used participants prior to 2001 as the historical cohort for visit-by-visit 

cognitive impairment classification starting 2001. Prior to 2001, 1,231 men were infected 

with HIV, while 870 were not. Five-fold CV on the 870 participants without HIV infection 
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was used to find an appropriate factor c to relax the thresholds on permutation testing. For 

each CV set, we used Cox proportional hazard regression to model survival and Poisson 

regression to model visit frequencies with all historical cohort participants except for the 

hold-out set. For survival modeling, participants were censored at 4 years past the last NP 

visit or 2001, whichever came earlier, if death was not observed or death happened beyond 

4 years past the last NP visit or 2001. Covariates in Cox regression included CD4 cell count 

along with its quadratic transformation, age at the first NP visit, Center for Epidemiologic 

Studies Depression (CESD) score, hepatitis C status, testing centers, and HIV serostatus. 

We controlled for CD4 cell count and its quadratic transformation, age, CESD, and HIV 

serostatus in Poisson regression.

For each CV set, the MLME was applied to the rest of historical healthy controls (i.e., 

participants without HIV infection in the earlier cohort) to estimate the mean trends and 

covariance structure. Based on the frequency prediction and MLME results, we treated each 

fold as if they were a newer cohort and conducted visit-by-visit classification of cognitive 

impairment using the DAC permutation test. After summarizing the rates from the five folds 

of healthy controls from the historical study, we found that we can relax the factor c to 1.4 

while keeping FWER around the pre-specified level. The results from the historical controls 

are illustrated in Figure 7 using this cross-validated c of 1.4.

Then, we applied the DAC to those participants enrolled from 2001, where 803 were 

infected with HIV and 796 were not. However, due to study policy changes, participants 

on average halved their frequencies to the NP substudy since 2001. Given this knowledge, 

we also halved the predicted frequencies for these participants. We truncated the predicted 

survival times by 2017 of the data freeze. The results for the newer cohorts are also shown 

in Figure 7 using the permutation test and the factor c of 1.4 from CV. First, we can 

observe that the newer cohorts have significantly more people with cognitive impairment 

identified as compared to historical healthy controls. Second, since 2001, the impairment 

rates between seronegative and seropositive groups are not significantly different if we set 

α = 0.05. This is consistent with the findings from Wang et al. 5,6 Table 3 shows the mean 

scores for all six cognitive domains at visits when participants were evaluated around the 

same time. Because participants were measured at a roughly half frequency in the newer 

cohorts due to policy changes since 2001, the visits in Table 3 were selected from the old 

and new cohorts to have comparable duration since the first visit. Across three comparison 

points, we can see that domains scores from the newer cohorts are generally lower than 

those from the historical seronegative group, especially in the motor speed & coordination 

domain for which the difference becomes more profound as time progresses. It has also been 

noted by other studies that seronegative participants in the newer cohorts are in general less 

healthy than the historical controls. 29 However, seronegative and seropositive participants in 

the newer cohorts do not seem to differ that much, which is consistent with what we have 

observed in Figure 7.

5 | DISCUSSION

The LMNC proposed by Wang et al 6 considered a research setting, where data have 

been collected and we only need one classification of prior impairment for each patient 
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by looking at retrospective data all together. As a comparison, the proposed DAC method 

has greater utility by affording visit-by-visit diagnosis. To facilitate the implementation 

of our methods, we have posted our code at https://github.com/tlwangzi123/Dynamic-

Arrayed-Comparison and developed an R Shiny app (https://lingyun-shiny.shinyapps.io/

DACShinnyApp/) to display individual scores over time and to illustrate dynamic 

classification using simulated domain scores, as the MACS NP data are not in the public 

domain. It is worth mentioning that the DAC method, along with the LMNC method, has 

broad applicability for classification, as long as measurements collected are longitudinal in 

nature and dynamic classification is of interest. The app can be easily adapted for other 

applications.

The proposed DAC method can effectively control FWER. Multivariate normality is an 

important assumption for the χ2 test, although FWER is slightly lower than the pre-

determined level. Since the χ2 test is much easier to compute, we suggest to use the χ2 test 

when the normality assumption is valid. When such an assumption is violated, permutation 

test can also control FWER as shown in the simulation studies. It remains critical to select 

an appropriate factor to relax the thresholds while keeping FWER under control. CV is 

an effective way to utilize the data collected from historical healthy controls to choose 

this factor. However, it does not generalize well to a new study when study duration or 

visit frequency are markedly different from the historical controls. Researchers must decide 

whether to adjust such factors and how much to adjust before conducting the DAC method.

The independence and the distribution of the DAC test statistics at visit ω have been 

established assuming that domain scores are available at all visits up to ω. This assumption 

can be relaxed for the test procedures based on the χ2 distribution. The MLME can 

easily handle missingness in domain scores, the independence proof does not rely on the 

dimensions of Xω−1 and Wω, and the χ2 distribution still holds, though the degree of 

freedom changes with the length of available domain scores. However, it is more challenging 

to extend our proposed methods to handle incomplete domain scores when data do not 

follow a multivariate normal distribution. The permutation procedure fails to work with 

missing values because different scores at different visits become missing and we cannot 

build a permutation test statistic with missing elements in the vector. Other inference 

procedures need to be developed instead. As missing domains are common in HIV research, 

the extension to handle incomplete data is of interest for future research.

In this article we focus on dynamic classification of impairment of individual participants 

during the course of a longitudinal study. Some participants may return to normal cognitive 

functioning due to random variation, regression to the mean, or treatment and they will 

remain under monitoring for future cognitive decline. With ongoing testing, intuitively it is 

reasonable to add some “reward” to the significance level, or the α wealth, that has been 

spent at the first detection, analogous to the ideas of α investment in Foster and Stine 30 

and Aharoni and Rosset. 31 In reality, more severe patients with extreme domain scores 

tend to be followed more frequently. In our proposed method, the number of assessments 

is predicted using baseline covariates, which are all determined at the start of a study. To 

take into account the domain scores, one would need to predict the number of assessments 

dynamically, which makes the adjustment of the testing procedures (to control FWER) much 
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more complicated. These are beyond the scope of this article and remain interesting future 

research topics.
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FIGURE 1. 
The DAC χ2 and permutation tests when data follow multivariate normal distributions
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FIGURE 2. 
The DAC χ2 and permutation tests; the upper panel is when data follow multivariate t 
distributions; the bottom panel is when data are transformed from Gamma distributions
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FIGURE 3. 
Histograms of the mean differences in simulations using the three methods
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FIGURE 4. 
The DAC χ2 and permutation tests based on the predicted numbers of visits from the 

two-model approach and the CPR

Wang et al. Page 23

Stat Med. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5. 
The DAC χ2 test based on the predicted number of visits from the PH-Poisson models when 

true survival follows a PH or PO model and frequency follows a Possion or NB model
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FIGURE 6. 
FWER and power of the DAC permutation tests when data follow multivariate t distributions 

and newer cohort has different study period or visit frequency (Case (2) and Case (4) are 

close to each other)

Wang et al. Page 25

Stat Med. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 7. 
Comparing proportion of cognitive impairment in the MACS
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TABLE 1

Summaries of the mean differences in simulations using the three methods

Quantities The Proposed Method CPR CGPR

Estimated Mean 0.582 1.180 1.194

Empirical SD 0.136 0.146 0.147
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TABLE 2

Summaries of the differences between predicted and simulated numbers under different time and frequency 

models with each quantity averaged over 1000 simulations

Quantities PH, Poisson PO, Poisson PH, NB PO, NB

Min −12.912 −12.913 −110.471 −97.051

Mean 0.585 0.613 0.627 0.596

Median 0.982 0.992 2.277 2.049

Max 11.845 11.985 27.574 26.737

SD 3.097 3.136 12.397 11.381
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TABLE 3

Mean scores of six cognitive domains for seronegative and seropositive groups at comparable times

Group (visit, % available) Motor Executive Speed Learning Memory Memory Memory

Seronegative (historical, visit 1, 100%) 48.06 50.18 50.45 51.08 51.31 49.28

Seronegative (newer, visit visit 1, 100%) 46.10 49.41 49.34 48.12 48.35 50.04

Seropositive (newer, visit visit 1, 100%) 46.11 49.17 48.42 48.78 48.78 50.00

Seronegative (historical, visit 5, 46%) 50.34 52.12 51.11 50.98 51.02 51.08

Seronegative (newer, visit3.68%) 44.04 49.42 49.54 48.39 48.54 49.10

Seropositive (newer, visit 3, 72%) 44.21 47.99 48.31 48.57 48.21 48.74

Seronegative (historical, visit 9, 16%) 50.51 54.72 52.21 52.29 51.45 52.55

Seronegative (newer, visit 5, 44%) 42.81 50.06 50.14 48.68 48.85 47.94

Seropositive (newer, visit 5, 53%) 42.78 48.57 48.40 48.41 48.64 46.92
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