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A NOTE ON THE LIKELIHOOD RATIO TEST IN HIGH-DIMENSIONAL
EXPLORATORY FACTOR ANALYSIS
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The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and
determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers
have found that when the dimension of the response data is large compared to the sample size, the classical
Chi-square approximation of the likelihood ratio test statistic often fails. Theoretically, it has been an open
problemwhen such a phenomenon happens as the dimension of data increases; practically, the effect of high
dimensionality is less examined in exploratory factor analysis, and there lacks a clear statistical guideline
on the validity of the conventional Chi-square approximation. To address this problem, we investigate
the failure of the Chi-square approximation of the likelihood ratio test in high-dimensional exploratory
factor analysis and derive the necessary and sufficient condition to ensure the validity of the Chi-square
approximation. The results yield simple quantitative guidelines to check in practice and would also provide
useful statistical insights into the practice of exploratory factor analysis.
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1. Introduction

Exploratory factor analysis serves as a popular statistical tool to gain insights into latent
structures underlying the observed data (Bartholomew et al. 2011; Fabrigar and Wegener 2011;
Gorsuch 1988). It is widely used in many application areas such as psychological and social
sciences (Fabrigar et al. 1999; Finch and Finch 2016; Preacher and MacCallum 2002; Thompson
2004). In factor analysis, the relationship among observed variables in data is explained by a
smaller number of unobserved underlying variables, called common factors. To understand the
underlying scientific patterns, one fundamental problem in factor analysis is to decide the mini-
mum number of latent common factors that is needed to describe the statistical dependencies in
data.

In order to determine the number of factors in exploratory factor analysis, a wide variety
of procedures have been proposed; see reviews and discussion in Costello and Osborne (2005),
Barendse et al. (2015) and Luo et al. (2019). For instance, one broad class of criteria are based
on the eigenvalues of the sample correlation matrix of the observed data. Examples include
the Kaiser criterion (Kaiser 1960), the scree test (Cattell 1966), the parallel analysis method
(Dobriban 2020; Horn 1965; Keeling 2000), testing linear trend of eigenvalues (Bentler and Yuan
1998), among many others. Another class of methods propose various goodness-of-fit indexes
to select the number of factors, such as AIC (Akaike 1987), BIC (Schwarz 1978), the reliability
coefficient (Tucker and Lewis 1973), and the root-mean-square error of approximation (Steiger
2016). Moreover, the likelihood ratio test provides another popularly used approach in practice
(Anderson 2003; Bartlett 1950).
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Among the various criteria to determine the number of factors, the likelihood ratio test plays a
unique role, as it is based on a formal hypothesis testing procedure with a clear statistical rationale
and also has a solid theoretical foundation with guaranteed statistical properties. In particular, the
likelihood ratio test examines how a factor analysis model fits the data using a hypothesis testing
framework based on the likelihood theory. The classical statistical theory shows that under the
null hypothesis, the likelihood ratio test statistic (after proper scaling) asymptotically converges
to a Chi-square distribution, with the degrees of freedom equal to the difference in the number
of free parameters between the null and alternative hypothesis models (see, e.g., Anderson 2003,
Section 14.3.2).

In the modern big data era, it is of emerging interest to analyze high-dimensional data (Chen
et al. 2019; Finch and Finch 2016; Harlow and Oswald 2016), where throughout this paper we
refer to the dimension of the observed response variables as the dimension of data. Classical
asymptotic theory, despite its importance, often replies on the assumption that the data dimension
is fixed as the sample size increases. Such an assumption often fails in high-dimensional data
analysis with large data dimension, and therefore, the corresponding asymptotic theory is no
longer directly applicable to modern high-dimensional applications. In fact, it has been found
in the recent statistical literature that the Chi-square approximations for the likelihood ratio test
statistics can become inaccurate as the dimension of data increases with the sample size (e.g.,
Bai et al. 2009; He et al. 2020a; Jiang and Yang 2013). In factor analysis, although considerable
high-dimensional statistical analysis results have been recently developed (Ait-Sahalia and Xiu
2017; Bai and Ng 2002; Bai and Li 2012; Chen and Li 2020; Sundberg and Feldmann 2016),
less attention has been paid to the statistical properties of the popular likelihood ratio test under
high dimensions. Particularly, it remains an open problem when the conventional Chi-square
approximation of the likelihood ratio test starts to fail as the data dimension grows. In other
words, for a dataset with sample size N , how large the data dimension p can be to still ensure the
validity of the Chi-square approximation of the likelihood ratio test?

To better understand this issue, this paper investigates the influence of the data dimensionality
on the likelihood ratio test in high-dimensional exploratory factor analysis. Specifically, under the
null hypothesis, we derive the necessary and sufficient condition for the Chi-square approximation
to hold. The results consider both the likelihood ratio test without and with the Bartlett correction
and provide useful quantitative guidelines that are easy to check in practice. Our simulation results
are consistent with the theoretical conclusions, suggesting good finite-sample performance of the
developed theory.

The rest of the paper is organized as follows. In Sect. 2.1, we give a brief review of the
exploratory factor analysis and the likelihood ratio test, and in Sect. 2.2, we present our theoretical
and numerical results on the performance of theChi-square approximation under high dimensions.
Several extensions are discussed in Sect. 3, and the technical proofs and additional simulation
studies are deferred to the appendix.

2. Likelihood Ratio Test Under High Dimensions

2.1. Likelihood Ratio Test for Exploratory Factor Analysis

In this section, we briefly review the likelihood ratio test in exploratory factor analysis (see,
e.g., Anderson 2003, Section 14). Suppose Xi , i = 1, . . . , N are independent and identically
distributed p-dimensional randomvectors. The exploratory factor analysis considers the following
common-factor model

Xi = μ + �Fi +Ui , (1)
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whereμ is the p-dimensionalmean parameter vector,� is a p×k0 loadingmatrixwith rank(�) =
k0 < p, Fi is a k0-dimensional random vector containing the common factors, and Ui is a p-
dimensional error vector. It is well known that the factor model (1) is not identifiable without
additional constraints, and there are many ways to impose identifiability restrictions (Anderson
2003; Bai and Li 2012). In this paper, we focus on the following identification conditions which
have been popularly used in exploratory factor analysis. In particular, we assume that Fi and
Ui are independent latent random vectors with E(Fi ) = 0k0 , cov(Fi ) = Ik0 , E(Ui ) = 0p,
and cov(Ui ) = �, where 0k0 denotes a k0-dimensional all-zero vector, Ik0 represents a k0 × k0
identity matrix, and� is a p× p diagonal matrix with rank(�) = p. It follows that the population
covariance matrix � = cov(Xi ) can be expressed as

� = ��� + �. (2)

Typically, the true number of common factors k0 is unknown. In exploratory factor analysis,
to determine the number of factors in model (1), various procedures have been developed. Among
them, the likelihood ratio test plays a unique role due to its solid theoretical foundation and nice
statistical properties. The common practice utilizes themodel’s likelihood function assuming both
Fi and Ui to be normally distributed. In such case, Xi follows a multivariate normal distribution
with mean vector 0p and covariance matrix � as in (2), and we write Xi ∼ N (0p, �). Then,
the likelihood ratio test is used to sequentially test the factor analysis model with a specified
number of factors against the saturated model (e.g., Hayashi et al. 2007). Specifically, for each
k = 0, 1, . . . , p, we consider the following null and alternative hypotheses:

H0,k : � = ��� + � with (at most) k factors, versus HA,k : � is any positive definite matrix.

In practice without a priori knowledge, a typical procedure examines the above hypotheses in a
forward stepwise manner. Specifically, we first consider k = 0 and examine H0,0 : k0 = 0 versus
HA,0 using the likelihood ratio test, that is, testing whether there is any factor in model (1). If
H0,0 is rejected, we then consider k = 1, that is, a 1-factor model in the null hypothesis H0,1. If
H0,1 is rejected, we proceed with k = 2 and test a 2-factor model for H0,2. This testing procedure
continues until we fail to reject H0,k̂ for some k̂. Then, k̂ is taken as an estimate of the true number
of factors based on the likelihood ratio test.

We next introduce the details on the above-mentioned likelihood ratio test. For k = 0, H0,0
examines the existence of any significant factors, which is an important problem in psychology
applications (e.g., Mukherjee 1970). This test can be written as

H0 : � = � versus HA : � �= �,

that is, testing whether� is a diagonal matrix. Statistically, this is also equivalent to the following
hypothesis test

H0 : R = Ip versus HA : R �= Ip,

where R denotes the population correlation matrix of the response variables {Xi , i = 1, . . . , N }.
Under the normality assumption of X , H0,0 then tests for the complete independence between
p dimensions of X . The likelihood ratio test statistic for H0,0 with the Chi-square limit is T0 =
−(N−1) log(|R̂N |), where R̂N denotes the sample correlationmatrix of the observations {Xi , i =
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1, . . . , N }, and |R̂N | denotes the determinant of R̂N ; see, e.g., Bartlett (1950).When the dimension
p is fixed and the sample size N → ∞, under H0,0,

T0
D−→ χ2

f0 , with f0 = p(p − 1)/2, (3)

where
D−→ represents the convergence in distribution, and χ2

f0
represents a random variable fol-

lowing the Chi-square distribution with degrees of freedom f0. To improve the finite-sample
performance, researchers have proposed using the Bartlett correction for the likelihood ratio
test (Bartlett 1950). The corrected test statistic is ρ0T0 with the Bartlett correction term ρ0 =
1− (2p + 5)/{6(N −1)}, and under H0,0 with fixed p and N → ∞, we still have the Chi-square
approximation:

ρ0 × T0
D−→ χ2

f0 , (4)

while it improves the convergence rate of the Chi-square approximation (3) from O(N−1) to
O(N−2).

For k ≥ 1, H0,k examines whether the k-factor model fits the observed data. Under the k-
factor model, let �̂k and �̂k denote the maximum likelihood estimators of � and �, respectively,
and define �̂k = �̂k�̂

�
k + �̂k . Then, to test H0,k , the likelihood ratio test statistic can be written

as

Tk = −(N − 1) log(|�̂| × |�̂k |−1) + (N − 1){tr(�̂�̂−1
k ) − p}, (5)

where �̂ is the unbiased sample covariance matrix of the observations {Xi , i = 1, . . . , N }, and
tr(A) denotes the trace of a matrix A; see, e.g., Lawley and Maxwell (1962). Under the null
hypothesis with k0 = k, p fixed and N → ∞, we have the following Chi-square approximation:

Tk
D−→ χ2

fk , where fk = {(p − k)2 − p − k}/2. (6)

Moreover, applying the Bartlett correction for this test, we have

ρk × Tk
D−→ χ2

fk , where ρk = 1 − 2p + 5 + 4k

6(N − 1)
. (7)

Despite the usefulness of the above Chi-square approximations, classical large sample theory
assumes that the data dimension p is fixed, and therefore, many conclusions are not directly
applicable to high-dimensional data when p increases with the sample size N . As analyzing
high-dimensional data is of emerging interest in modern data science, it imposes new challenges
to understanding the statistical performance of the likelihood ratio test in the exploratory factor
analysis, which will be investigated in the next section.
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Figure 1.
Histograms of T0 and ρ0T0 with the density curves of χ2

f0
(Color figure online).

2.2. Main Results

In high-dimensional exploratory factor analysis, it is important to understand the limiting
behavior of the likelihood ratio test, as applying an inaccurate limiting distribution would lead to
misleading scientific conclusions. This section focuses on the limiting distribution of the likelihood
ratio test under the null hypothesis and investigates the influence of the data dimension p and the
sample size N on the Chi-square approximation.

Recent statistical literature has shown that the Chi-square approximation for the likelihood
ratio test can become inaccurate in various testing problems (Bai et al. 2009; He et al. 2020a;
Jiang and Yang 2013), while this inaccuracy issue is still less studied in the exploratory factor
analysis. To demonstrate that similar phenomena exist for the exploratory factor analysis, we first
present a numerical example, before showing our theoretical results.

Numerical Example 1. Consider H0,0 in Sect. 2.1 with N = 1000 and p ∈ {20, 100, 300, 500}.
Under each combination of (N , p), we generate Xi , i = 1, . . . , N fromN (0p, Ip) independently
and then compute the likelihood ratio test statistics T0 in (3) and its Bartlett corrected version
ρ0T0 in (4). We repeat the procedure 5000 times and present the histograms of T0 and ρ0T0 in
the first and second rows, respectively, of Fig. 1. For comparison, in each histogram, we add the
theoretical density curve of the limiting distribution χ2

f0
in (3) and (4) (the red curves in Fig. 1).

From the two figures in the first column of Fig. 1, we can see that when p is small (p = 20)
compared to N , the density curve of χ2

f0
approximates the histograms of T0 and ρ0T0 well. This is

consistent with the classical large sample theory in (3) and (4). However, as p increases from 20
to 500, the density curve of χ2

f0
moves farther away from the sample histograms of T0 and ρ0T0,

indicating the failure of the Chi-square approximation as p increases. It is also interesting to note
that the likelihood ratio test statistics without and with the Bartlett correction behave differently
as p increases, despite their similarity when p is small. For instance, when p = 100, χ2

f0
already

fails to approximate the distribution of T0, but it can still well approximate that of the corrected
statistic ρ0T0. Nevertheless, when p = 300 and 500, χ2

f0
fails to approximate the distributions of

both T0 and ρ0T0, while the approximation biases differ. These numerical observations bring the
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Figure 2.
Estimated type I error versus ε when k0 = 0 (Color figure online).

following question in practice: how large the dimension p with respect to the sample size N can
be so that we can still apply the classic Chi-square approximation for the likelihood ratio test?

To provide a statistical insight into this important practical issue, we derive the necessary and
sufficient condition to ensure the validity of the Chi-square approximation for the likelihood ratio
test, as p increases with N . Particularly, we first consider H0,0 : k0 = 0 in Sect. 2.1 and provide
Theorem 1.

Theorem 1. Suppose N ≥ p + 5. Let χ2
f0
(α) denote the upper-level α-quantile of the χ2

f0
distribution. Under H0,0 : k0 = 0, as N → ∞,

(i) supα∈(0,1) |Pr{T0 > χ2
f0
(α)} − α| → 0, if and only if limn→∞ p/N 1/2 = 0;

(ii) supα∈(0,1) |Pr{ρ0 × T0 > χ2
f0
(α)} − α| → 0, if and only if limn→∞ p/N 2/3 = 0.

In Theorem 1, N ≥ p + 5 is required for the technical proof. This condition is mild as
N ≥ p + 1 is required for the existence of the likelihood ratio test statistic with probability
one (Jiang and Yang 2013). Theorem 1 (i) suggests that the Chi-square approximation for T0
in (3) starts to fail when the dimension p approaches N 1/2 and (ii) shows that the Chi-square
approximation for ρ0T0 in (4) starts to fail when p approaches N 2/3. To further demonstrate the
validity of Theorem 1, we conduct a simulation study as follows.

Numerical Example 2. We take p = 	N ε
, where N ∈ {100, 500, 1000, 2000} and ε ∈
{3/24, 4/24, . . . , 23/24}. For each combination of (N , p), we generate Xi from N (0p, Ip) for
i = 1, . . . , N independently and conduct the likelihood ratio test with two Chi-square approx-
imations in (3) and (4), respectively. We repeat the procedure 1000 times to estimate the type
I error rates with significance level 0.05 and then plot estimated type I error rates versus ε in
Fig. 2. The left figure in Fig. 2 presents the results of the Chi-square approximation for T0 in (3),
where the estimated type I error begins to inflate when ε approaches 1/2. In addition, the right
figure in Fig. 2 presents the results of the Chi-square approximation for ρ0T0 in (4), where the
estimated type I error begins to inflate when ε approaches 2/3. The two theoretical boundaries
on ε in Theorem 1 are denoted by two vertical dashed lines in Fig. 2. For each approximation,
the theoretical and empirical values of ε where the approximation begins to fail are consistent.

We next investigate the sequential test for H0,k when k ≥ 1. Under H0,k , assume the true
factor number is k, and �k�

�
k and �k are the true values such that (2) holds with ��� = �k�

�
k

and � = �k , where �k is a matrix of size p × k, and �k is a diagonal matrix. In classical
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multivariate analysis with fixed dimension and certain regularity conditions, it can be shown that

�̂k�̂
�
k

P−→ �k�
�
k and �̂k

P−→ �k , where
P−→ represents the convergence in probability; see, e.g.,

Theorem 14.3.1 in Anderson (2003). To facilitate the following theoretical analysis, we consider a
simplified version of the test by assuming �k�

�
k and �k are given and define �k = �k�

�
k +�k .

Then, we consider testing H ′
0,k : � = �k , and the likelihood ratio test statistic can be expressed

as

T ′ = −(N − 1) log(|�̂| × |�k |−1) + (N − 1){tr(�̂�−1
k ) − p};

see Section 8.4 of Muirhead (2009). The test statistics T ′ and Tk in (5) are the same except that
T ′ is based on the true value �k = �k�

�
k + �k , while Tk is based on �̂k = �̂k�̂

�
k + �̂k , with

�̂k�̂
�
k and �̂k being the maximum likelihood estimators of �k�

�
k and �k , respectively, under

the k-factor model. Under the classical setting with p fixed, the Chi-square approximation of T ′

is T ′ D−→ χ2
f ′ , where f ′ = p(p + 1)/2, and by the Bartlett correction with ρ′ = 1 − {6(N −

1)(p+ 1)}−1(2p2 + 3p− 1), we have ρ′T ′ D−→ χ2
f ′ . For this simplified testing problem H ′

0,k , the

test statistic T ′ and its limit do not depend on the number of factors k, as the true �k�
�
k and �k

are assumed to be given.
Considering H ′

0,k and the statistic T
′, we next provide the necessary and sufficient condition

on when the Chi-square approximation for the likelihood ratio test fails as the data dimension p
increases under H ′

0,k .

Theorem 2. Suppose N ≥ p + 2. Under H ′
0,k : � = �k�

T
k + �k , with given �k and �k , and

k = k0, as N → ∞,

(i) supα∈(0,1) |Pr{T ′ > χ2
f ′(α)} − α| → 0, if and only if limn→∞ p/N 1/2 = 0;

(ii) supα∈(0,1) |Pr{ρ′ × T ′ > χ2
f ′(α)} − α| → 0, if and only if limn→∞ p/N 2/3 = 0.

Remark 1. For the more general testing problem H0,k , we need to obtain the maximum likelihood
estimators �̂k and �̂k and then conduct the likelihood ratio test with Chi-square approximations
(6) or (7). When the number of latent factors k is fixed compared to N and p, we note that
ρk/ρ

′ and fk/ f ′ asymptotically converge to 1. Furthermore, if �̂k�̂
�
k + �̂k approximates the

true �k�
�
k + �k sufficiently well, we expect that the conclusions in Theorem 2 would hold for

the likelihood ratio test under the null hypothesis H0,k similarly. In particular, when k is fixed
as N → ∞, consistent estimation of �k and �k has been discussed under both fixed p in the
classical literature (see, e.g., Anderson 2003, Theorem 14.3.1) and p → ∞ in recent literature
on high-dimensional factor analysis model (see, e.g., Bai and Li 2012). When k also diverges
with N and p, which is an asymptotic regime that is less investigated in the literature, deriving
a similar condition for the Chi-squared approximation would require accurate characterizations
of the biases of estimating �k and �k , which, however, would be challenging and need new
developments of high-dimensional theory and methodology.

We next demonstrate the theoretical results through the following numerical study.

Numerical Example 3. We consider the likelihood ratio test under H0,k with k = k0 ∈ {1, 3}.
(I) When k0 = 1, under H0,1, we set � = ρ × 1p and � = (1 − ρ2)Ip, with ρ = 0.3. (II) When
k0 = 3, under H0,3, we set � = (1 − ρ2)Ip and

� =
⎡
⎣

ρ × 1p1 0p1 0p1
0p1 ρ × 1p1 0p1

0p−2p1 0p−2p1 ρ × 1p−2p1

⎤
⎦ ,
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Figure 3.
Estimated type I error versus ε when k0 = 1 (Color figure online).

Figure 4.
Estimated type I error versus ε when k0 = 3 (Color figure online).

where p1 = 	p/3
, ρ = 0.6, and 1p1 represents a p1-dimensional vector with all
one entries. For both cases, we set p = 	N ε
, where N ∈ {100, 500, 1000, 2000} and
ε ∈ {8/24, 7/24, . . . , 23/24}. And we generate each observation Xi , i = 1, . . . , N, from
N (0,��� +�) independently, and conduct the likelihood ratio test with the function factanal()
in R. Similarly to Fig. 2, we plot the estimated type I error rates (based on 1000 replications)
versus ε for two approximations (6) and (7), where the results of case (I) are in Fig. 3, and the
results of case (II) are in Fig. 4.

Similarly toNumerical Example 2,Numerical Example 3 also demonstrates that the empirical
values of ε, where the Chi-square approximations start to fail, are consistent with the correspond-
ing theoretical results. The necessary and sufficient conditions therefore would provide simple
quantitative guidelines to check in practice. In addition, it is worth mentioning that the conditions
in Theorems 1 and 2 also reflect the biases of the Chi-square approximations. For instance, consid-
ering the likelihood ratio test for H0,0, by the proof of Theorem 1, when p/N → 0, we obtain that
E(T0 −χ2

f0
)×{var(χ2

f0
)}−1/2 is approximately C1 p2/N , and E(ρ0 ×T0 −χ2

f0
)×{var(χ2

f0
)}−1/2

is approximately C2 p3/N 2, where C1 and C2 are positive constants. This suggests that the mean
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of the Chi-square limit will become smaller than the means of T0 and ρ0T0 as p increases, which
is consistent with the observed phenomenon in Fig. 1.

Moreover, Figs. 2, 3, and 4 show that the estimated type I error of the likelihood ratio test
increases as ε increases. This can provide one possible explanation for the well-known finding
that the likelihood ratio test tends to overestimate the number of factors (Hayashi et al. 2007).
In particular, let k̂ denote the number of factors estimated by the sequential procedure described
in Sect. 2.1, and let k0 denote the true number of factors. Note that in the sequential procedure,
rejecting H0,k0 leads to an overestimation of the number of factors, i.e., k̂ > k0. Thus, when the
type I error of testing H0,k0 inflates as in Figs. 2, , 3, and 4, the probability of rejecting H0,k0
would also increase, which consequently suggests an inflation of the probability of overestimating
the number of factors, k̂ > k0. We also conduct simulation studies in Sect. B.2 to demonstrate the
performance of estimating the number of factors using the likelihood ratio test. The numerical
results are consistent with the above theoretical analyses and show that the procedure begins to
overestimate the number of factors when the type I error begins to inflate.

Furthermore, Theorems 1 and 2 indicate that given the same sample size, the Chi-square
approximation with the Bartlett correction can hold for a larger p than the one without the Bartlett
correction. This explains the patterns observed in Fig. 1. Under the classical settings where p is
fixed, researchers have shown that the Bartlett correction can improve the convergence rate of
the likelihood ratio test statistic from O(N−1) to O(N−2); however, this result does not apply
to the high-dimensional setting with p increasing with N . Our theoretical results in Theorems 1
and 2 provide a more precise description on how the Bartlett correction improves the Chi-square
approximations for high-dimensional data, in terms of the failing boundary of p with respect to
N .

Remark 2. Similar phase transition phenomena were discussed in He et al. (2020b). However,
we point out that this paper considers different problem settings. In particular, He et al. (2020b)
discussed several problems on testingmean vectors and covariances,whereasTheorem1 examines
testing correlation matrices. Moreover, Theorem 2 considers a problem of testing the covariance
equal to a given k-factor matrix, which was not discussed in He et al. (2020b). To establish the
result, it is required to derive a new high-dimensional asymptotic result given as Lemma 3 in
Appendix of this paper.

3. Discussion

This paper investigates the influence of the data dimension on the popularly used likelihood
ratio test in high-dimensional exploratory factor analysis. For the likelihood ratio test without
or with the Bartlett correction, we derive the necessary and sufficient conditions to ensure the
validity of theChi-square approximations under the corresponding null hypothesis. The developed
theoretical conditions only depend on the relationship between the data dimension and the sample
size and would provide simple quantitative guidelines to check in practice.

The theoretical results in this paper are established under the common normality assumption
of the observations {Xi , i = 1, . . . , N }. To illustrate the robustness of the theoretical results to the
normality assumption, we conduct additional simulation studies with Xi ’s following a discrete
distribution or a heavy-tailed t-distribution in Appendix. Similar numerical findings are observed
when detecting the existence of factors, which suggests the validity of the theoretical results and
the usefulness of the developed conditions in practice. Please see Sect. B.1 in Appendix.

Moreover, this paper focuses on controlling the type I error when testing a given null hypoth-
esis, whereas deciding the number of factors would involve multiple steps of hypothesis testing in
the sequential procedure.When the derived phase transition conditions are satisfied, our theoretical
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results suggest that the type I error of testing corresponding null hypothesis can be asymptotically
controlled. However, the probability of correctly deciding the true number of factors relies on not
only the type I error but also the power of testing each hypothesis in the sequential procedure.
The power of the likelihood ratio test depends on certain complicated hypergeometric functions
(Muirhead 2009), which would be very challenging to investigate under high dimensions. We
would like to leave this interesting problem as a future study. In addition to the likelihood ratio
test, it is also of interest to develop other efficient methods for deciding the number of factors in
high-dimensional settings (see, e.g., Bai and Ng 2002; Chen and Li 2020).

When applying the likelihood ratio test in the exploratory factor analysis, it is worth noting
that the data dimension p is not the only condition to consider. Researchers have discussed various
other regularity conditions such as small sample size (MacCallum et al. 1999; Mundfrom et al.
2005; Winter et al. 2009; Winter and Dodou 2012), nonnormality (Barendse et al. 2015; Yuan
et al. 2002), and rank deficiency (Hayashi et al. 2007). The results in this paper only provide one
necessary requirement to check in the high-dimensional exploratory factor analysis.

The results in this paper are also related to the important design problem onminimum sample
size requirement for the exploratory factor analysis (Mundfrom et al. 2005; Velicer and Fava
1998). The existing literature has conducted extensive simulation studies to explore what is the
minimum sample size N required or how large the ratio N/p should be. In this paper, we derive
theoretical results suggesting that we may also consider the polynomial relationship between N
and p. Specifically, given the number of variables p to consider, the sample size should be at least
p2 to apply the likelihood ratio test, and at least p3/2 to apply the likelihood ratio test with the
Bartlett correction. This may provide helpful statistical insights into the practice of exploratory
factor analysis.

Although this paper focuses on the exploratory factor analysis, we expect that the failure
of Chi-square approximations under high dimensions can happen generally in other latent factor
modeling problems such as the confirmatory factor analysis (Koran 2020; Thompson 2004) and
the exploratory item factor analysis (Chen et al. 2019; Reckase 2009). Moreover, the phenomena
introduced in this paper may also occur for other fit indexes that involve certain Chi-square limit,
such as the root-mean-square error of approximation (Steiger 2016).Newhigh-dimensional theory
and methodology for these problems would need to be further investigated.
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Appendix

This appendix presents the technical proofs in Sect. A and additional simulations in Sect. B.

A. Proofs

We prove Theorems 1 and 2 in Sects. A.1 and A.2, respectively, and provide a required lemma
and its proof in Sect. A.3. In the following proofs, for two sequences of number {aN : N ≥ 1}
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and {bN : N ≥ 1}, aN = O(bN ) denotes lim supn→∞ |aN/bN | < ∞, and aN = o(bN ) denotes
limN→∞ aN/bN = 0.

A.1. Proof of Theorem 1

To derive the necessary and sufficient condition on the dimension of data, it is required to correctly
understand the limiting behavior of the likelihood ratio test statistic under both low- and high-
dimensional settings. In particular, we examine the limiting distribution of the likelihood ratio test
statistic based on its moment generating function. For easy presentation in the technical proof, we
let n = N − 1 below. Then, we can write T0 = −n log |R̂n|. Under the conditions of Theorem 1,
by Theorem 5.1.3 in Muirhead (2009) and Lemma 5.10 in Jiang and Yang (2013), we know that
there exists a small constant δ0 > 0 such that for h ∈ (−δ0, δ0),

E{exp(h × T0)} = E{|R̂n|−hn} =
{

�(n/2)

�(n/2 − hn)

}p

× �p(n/2 − hn)

�p(n/2)
,

where �(z) denotes the Gamma function, and �p(z) denotes the multivariate Gamma function
satisfying �p(z) = π p(p−1)/4 ∏p

j=1 �{z − ( j − 1)/2}.
Part (i) The Chi-square approximation.When p is fixed compared to N , by applying Stirling’s
approximation to the Gamma function, it can be shown that as N → ∞, for any h ∈ (−δ0, δ0),
E{exp(h × T0)} converges to (1 − 2h)− f0/2, which is the moment generating function of χ2

f0
;

see, e.g., Bartlett (1950) and Section 5.1.2 of Muirhead (2009). It follows that T0
D−→ χ2

f0
by

the continuity theorem. When p → ∞, Jiang and Yang (2013) and Jiang and Qi (2015) derived
an approximate expansion of the multivariate Gamma function �p(·) when p increases with the
sample size N and then showed that for any h ∈ (−δ0, δ0),

E[exp{h(T0 + nμn,0)/(nσn,0)}] → exp(h2/2), (8)

where δ0 is a constant that is sufficiently small, exp(h2/2) is the moment generating function of
the standard normal random variable N (0, 1), and

μn,0 = (p − n + 1/2) log
(
1 − p

n

)
− n − 1

n
p, σ 2

n,0 = −2
{ p

n
+ log

(
1 − p

n

)}
.

This suggests (T0 + nμn,0)/(nσn,0)
D−→ N (0, 1) by the continuity theorem. Note that χ2

f0
can be

viewed as a summation of the squares of f0 independent standard normal random variables, and
f0 → ∞ when p → ∞. By applying the central limit theorem to χ2

f0
when p → ∞, we obtain

(χ2
f0

− f0)/
√
2 f0

D−→ N (0, 1), giving E[exp{h(χ2
f0

− f0)/
√
2 f0}] → exp(h2/2). Therefore, if

the Chi-square approximation for T0 holds, we know E[exp{h(T0 − f0)/
√
2 f0}] → exp(h2/2)

for h ∈ (−δ0, δ0), which, given (8), is equivalent to

√
2 f0 × (nσn,0)

−1 → 1, (9)

( f0 + nμn,0) × (nσn,0)
−1 → 0. (10)

We next examine (9) and (10) by discussing two cases limn→∞ p/n = 0 and limn→∞ p/n =
C ∈ (0, 1], respectively.
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Case (i.1): limn→∞ p/n = 0. Under this case, we show that (9) holds. By Taylor’s expansion,
log(1 − x) = −x − x2/2 + O(x3) for x ∈ (0, 1), and then,

σ 2
n,0 = −2

{
− p2

2n2
+ O

(
p3

n3

)}
= p2

n2
{1 + o(1)}. (11)

Recall that f0 = p(p − 1)/2, and it follows that (9) holds. Next, we prove (10) holds if and only
if p/n1/2 → 0. Similarly by Taylor’s expansion and p/n = o(1), we have

μn,0 = (−n + p + 1/2)

{
−

3∑
k=1

1

k

( p

n

)k + O

(
p4

n4

)}
− n − 1

n
p

= p + p2

2n
+ p3

3n2
− p(p + 1/2)

n
− p2(p + 1/2)

2n2
+ O

(
p4

n3

)
− p + p

n

= p

2n
− p2

2n
− p3

6n2
+ O

(
p4

n3

)
+ o

( p

n

)
,

and then, f0 + nμn,0 = −p3/(6n) + O(p4/n2) + o(p). Given that (9) holds under this case and√
2 f0/p → 1, we obtain ( f0 + nμn,0) × (nσn,0)

−1 = −p2/(6n) + O(p3/n2) + o(1), which
converges to 0 if and only if p2/n → 0 under this case.
Case (i.2): limn→∞ p/n = C ∈ (0, 1]. Under this case, we show that (9) does not hold. Note
that

2 f0
n2σ 2

n,0

→ C2

−2{C + log(1 − C)} .

If C = 1, 2 f0/(n2σ 2
n,0) → 0, and thus, (9) does not hold. We next consider C ∈ (0, 1). If (9)

holds, we shall have g1(C) = 0 with g1(C) = C2 + 2{C + log(1 − C)}. By taking derivative of
g1(C), we obtain

g′
1(C) = 2C + 2 − 2

1 − C
= − 2C2

1 − C
< 0

when C ∈ (0, 1). This suggests that g1(C) is strictly decreasing on C ∈ (0, 1). As g1(0) = 0, we
know g1(C) < 0 for C ∈ (0, 1), and thus, (9) does not hold.

Finally, we consider a general sequence p/n ∈ (0, 1] and write pn = p and fn,0 = f0 below
to emphasize that p and f0 change with n. For the bounded sequence {pn/n}, by the Bolzano–
Weierstrass theorem, we can further take a subsequence {pnk/nk} such that pnk/nk → C ∈ [0, 1].
If C ∈ (0, 1], the analysis in Case (i.2) applies, and we know

√
2 fnk ,0 × (nkσnk ,0)

−1 does not
converge to 1. Since a sequence converges if and only if every subsequence converges, we know (9)
does not converge to 1 under this case. Alternatively, if all the subsequences of {p/n} converge
to 0, we know p/n → 0, and the analysis in Case (i.1) applies. In summary, the Chi-square
approximation holds if and only if p2/n → 0.

Part (ii) The Chi-square approximation with the Bartlett correction. Similarly to the proof
of Part (i), when p is fixed, it has been shown that E{exp(h × ρ0 × T0)} → (1 − 2h)− f0/2

for h ∈ (−δ0, δ0) and ρ0 = 1 − (2p + 5)/(6n) (see, e.g., Bartlett 1950); when p → ∞,
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we also have that (8) holds. If the Chi-square approximation with the Bartlett correction holds,
E[exp{h(ρ0T0 − f0)/

√
2 f0}] → exp(h2/2) for h ∈ (−δ0, δ0), which, given (8), is equivalent to

√
2 f0 × (nρ0 × σn,0)

−1 → 1, (12)

( f0 + nρ0 × μn,0) × (nρ0 × σn,0)
−1 → 0. (13)

Case (ii.1): limn→∞ p/n = 0. Under this case, we have that (12) holds given ρ0 → 1 and (9)
proved above. We next prove (13) holds if and only if p3/n2 → 0. Similarly to the proof in Case
(i.1), by Taylor’s expansion and p/n = o(1), we have

μn,0 = (−n + p + 1/2)

{
−

4∑
k=1

1

k

( p

n

)k + O

(
p5

n5

)}
− n − 1

n
p

= p + p2

2n
+ p3

3n2
+ p4

4n3
− p(p + 1/2)

n
− p2(p + 1/2)

2n2

− p3(p + 1/2)

3n3
+ O

(
p5

n4

)
− p + p

n

= p

2n
− p2

2n
− p3

6n2
− p4

12n3
+ O

(
p5

n4

)
+ o

( p

n

)
.

By nρ0 = n − (2p + 5)/6, we obtain

f0 + nρ0 × μn,0 = f0 + n × μn,0 − p × μ0/3 + o(p)

= f0 + p − p2

2
− p3

6n
− p4

12n2
+ O

(
p5

n3

)
+ o(p) + p3

6n
+ p4

18n2

= − p4

36n2
+ O

(
p5

n3

)
+ o(p).

Given that (12) holds, under this case and
√
2 f0/p → 1,weobtain ( f0+nρ0μn,0)×(nρ0σn,0)

−1 =
−p3/(36n2)+O(p4/n3)+o(1), which converges to 0 if and only if p3/n2 → 0 under this case.
Case (ii.2): limn→∞ p/n = C ∈ (0, 1]. Under this case, we show that (12) does not hold. Note
that

2 f0
n2ρ2

0σ
2
n,0

→ C2

−2(1 − C/3)2{C + log(1 − C)} . (14)

If C = 1, 2 f0/(n2ρ2
0σ

2
n,0) → 0, and thus, (12) does not hold. We next consider C ∈ (0, 1). If

(12) holds, we shall have g2(C) = 0 with g2(C) = C2 + 2(1 − C/3)2{C + log(1 − C)}. By
taking derivative of g2(C), we obtain g′

2(0) = 0, g′′
2 (0) = 0, and

g′′′
2 (C) = −4C(3C2 − 8C + 9)

9(1 − C)3
< 0
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when C ∈ (0, 1). Similarly to the analysis in Case (i.1), we obtain that g′
2(C) < 0 for C ∈ (0, 1).

It follows that g2(C) is strictly decreasing on C ∈ (0, 1) with g2(0) = 0. Therefore, g2(C) < 0
on C ∈ (0, 1), which suggests that (12) does not hold.

Finally, for a general sequence p/n ∈ (0, 1], following the analysis of taking subsequences
in Part (i), we know that the Chi-square approximation with the Bartlett correction holds if and
only if p3/n2 → 0. Recall that N = n + 1. Thus, the same conclusions hold asymptotically by
replacing n with N ; that is, the Chi-square approximations without andwith the Bartlett correction
hold if and only if p2/N → 0 and p3/N 2 → 0, respectively.

A.2. Proof of Theorem 2

Similarly to the proof of Theorem 1, we next examine the limiting distribution of T ′ based on its
moment generating function. In Theorem 2, testing H ′

0,k : � = �k�
�
k +�k when�k and�k are

given is equivalent to testing the null hypothesis H0 : � = Ip by applying the data transformation

�
−1/2
k Xi with �k = �k�

�
k + �k . Then, by Corollary 8.4.8 in Muirhead (2009), under the null

hypothesis, we have

E{exp(h × T ′)} =
(
2e

n

)−pnh

(1 − 2h)−pn(1−2h)/2 × �p{n(1 − 2h)/2}
�p(n/2)

, (15)

where n = N − 1.

Part (i) The Chi-square approximation. When p is fixed compared to the sample size N , by
applying Stirling’s approximation to the Gamma function, it has been shown that as N → ∞,
(15) converges to (1−2h)− f ′/2, which is the moment generating function of χ2

f ′ (Muirhead 2009,

Section 8.4.4), and therefore, T ′ D−→ χ2
f ′ . When p → ∞, by the proof of Lemma 3 in Sect. A.3,

we have E[exp{h(T ′ + nμn)/(nσn)}] → exp(h2/2), where

μn = −p + (p − n + 1/2) log
(
1 − p

n

)
, σ 2

n = −2
{ p

n
+ log

(
1 − p

n

)}
. (16)

Similarly to the proof of Theorem 1, we know that the Chi-square approximation for T ′ holds if
and only if

√
2 f ′ × (nσn)

−1 → 1, (17)

( f ′ + nμn) × (nσn)
−1 → 0. (18)

Case (i.1): limn→∞ p/n = 0. Under this case, similar to (11), by Taylor’s expansion, σ 2
n =

p2n−2{1+ o(1)}. As √
2 f ′/p → 1, we have that (17) holds. We next show that (18) holds if and

only if p2/n → 0. Particularly, by Taylor’s expansion and p/n → 0,

μn = −p + (−n + p + 1/2)

{
− p

n
− p2

2n2
− p3

3n3
+ O

(
p4

n4

)}
(19)

= −p + p + p2

2n
+ p3

3n2
− p2

n
− p3

2n2
− p

2n
+ O

(
p4

n3

)
+ o

( p

n

)
.

It follows that f ′ + nμn = −p3/(6n2) + O(p4/n3) + o(p/n). Given (17) and
√
2 f ′/p → 1,

(18) holds if and only if p2/n → 0.
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Case (i.2): limn→∞ p/n = C ∈ (0, 1]. Under this case, 2 f ′/(n2σ 2
n ) → −C2/[2{C + log(1 −

C)}]. We then know (17) does not hold following the proof of Theorem 1, and therefore, the
Chi-square approximation fails.

Finally, for a general sequence p/n ∈ (0, 1], following the same analysis of taking subse-
quences as in the proof of Theorem 1, we know that the Chi-square approximation holds if and
only if p2/n → 0.

Part (ii) The Chi-square approximation with the Bartlett correction. Similarly to the proof of
Theorem 1 and the analysis above, we know that the Chi-square approximation with the Bartlett
correction holds if and only if

√
2 f ′ × (nρ′ × σn)

−1 → 1, (20)

( f ′ + nρ′ × μn) × (nρ′ × σn)
−1 → 0. (21)

Case (ii.1): limn→∞ p/n = 0. As ρ′ → 1 under this case, we know (20) holds given (17) proved
in Part (i). We next prove (21) holds if and only if p3/n2 → 0. Similarly to (19), by Taylor’s
expansion and p/n → 0,

μn = −p + (−n + p + 1/2)

⎧⎨
⎩−

4∑
j=1

p j

j × n j
+ O

(
p5

n5

)⎫⎬
⎭

= − p(p + 1)

2n
− p3

6n2
− p4

12n3
+ O

(
p5

n4

)
+ o

( p

n

)
.

By nρ′ = n − p/3 + O(1) and p/n → 0,

nρ′μn = {n − p/3 + O(1)}
{

− p(p + 1)

2n
− p3

6n2
− p4

12n3
+ O

(
p5

n4

)
+ o

( p

n

)}
+ o(p)

= − p(p + 1)

2
− p3

6n
− p4

12n2
+ p3

6n
+ p4

18n2
+ O

(
p5

n3

)
+ o(p).

It follows that f ′ + nρ′μn = −p4/(36n2) + O(p4/n3) + o(p). Given (13) and
√
2 f ′/p → 1,

(21) holds if and only if p3/n2 → 0.
Case (ii.2): limn→∞ p/n = C ∈ (0, 1]. Under this case, ρ′ → 1 − C/3 and 2 f ′/(nρ′σn)2
converge to the limit same as the right-hand side of (14). Thus, the same analysis applies and we
know that the Chi-square approximation with the Bartlett correction fails.

Finally, for a general sequence p/n ∈ (0, 1], following the same analysis of taking subse-
quences as in the proof of Theorem 1,we know that the Chi-square approximationwith the Bartlett
correction holds if and only if p3/n2 → 0. Recall that N = n + 1. Thus, the same conclusions
hold asymptotically by replacing n with N ; that is, the Chi-square approximations without and
with the Bartlett correction hold if and only if p2/N → 0 and p3/N 2 → 0, respectively.

A.3. Lemma

Lemma 3. Under the conditions of Theorem 2, when p → ∞ as n = N − 1 → ∞, we have

(T ′ + nμn)/(nσn)
D−→ N (0, 1) with μn and σ 2

n in (16).
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Proof. It suffices to show that there exists a constant δ′ > 0 such that E[exp{h(T ′ +
nμn)/(nσn)}] → exp(h2/2) for all |h| < δ′. Particularly, we let s = h/(nσn) and prove
log[E{exp(sT ′)}] → h2/2 − hμn/σn . By the moment generating function of T ′ in (15), we
have

log
[
E{exp(s × T ′)}] (22)

= −pns log(2e/n) − pn

2
(1 − 2s) log(1 − 2s) + log

{
�p(n/2 − ns)

�p(n/2)

}
.

We next derive the approximate expansion of (22) by discussing two cases.
Case 1: lim p/n → C ∈ (0, 1]. Under this case, we utilize the approximate expansion of
multivariate gamma function in Lemma 5.4 of Jiang and Yang (2013). To apply the result, we first
show that the conditions are satisfied. Specifically, define r2n = − log(1 − p/n), and we have

(−ns)2 × r2n = − h2

σ 2
n
log(1 − p/n) →

⎧⎪⎪⎨
⎪⎪⎩

h2

2
× log(1 − C)

C + log(1 − C)
, if C ∈ (0, 1);

h2

2
, if C = 0.

Therefore, −ns = O(1/rn), and then, Lemma 5.4 in Jiang and Yang (2013) can be applied to
expand (22). It follows that

(22) = −pns log(2e/n) − pn

2
(1 − 2s) log(1 − 2s)

−pns log{n/(2e)} + r2n
{
(−ns)2 − (p − n + 1/2)(−ns)

}
+ o(1).

By Taylor’s expansion (1 − 2s) log(1 − 2s) = −2s + 2s2 + O(s3) for s ∈ (0, 1), we obtain

(22) = − pn

2

{
−2s + 2s2 + O(s3)

}

− log
(
1 − p

n

) {
n2s2 + (p − n + 1/2)ns

}
+ o(1)

= s2
{
−pn − n2 log

(
1 − p

n

)}
+ s

{
pn − (p − n + 1/2) log

(
1 − p

n

)}
+ o(1).

With s = h/(nσn), we have log(E[exp{hT ′/(nσn)}]) = h2/2 − hμn/σn + o(1).
Case 2: lim p/n = 0. Under this case, we utilize the approximate expansion of multivariate
gamma function in Proposition A.1 of Jiang and Qi (2015). To apply the result, we first show
that the conditions are satisfied. Particularly, as σ 2

n = p2n−2{1 + o(1)}, we have −ns × p/n =
−ph(nσn)

−1 = h{1 + o(1)}. Therefore, −ns = O(n/p), and we can apply Proposition A.1 in
Jiang and Qi (2015) to expand (22). It follows that

log

{
�p(n/2 − ns)

�p(n/2)

}
= γn,1(−ns) + γn,2(−ns)2 + γn,3 + o(1),

where

γn,1 = − {2p + (n − p − 1/2) log (1 − p/n)} ,
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γn,2 = − {p/n + log (1 − p/n)} ,

γn,3 = p {(n/2 − ns) log (n/2 − ns) − (n/2) log (n/2)} .

Note that γn,3 = (pn/2)(1 − 2s) log(1 − 2s) − pns log(n/2). Then, we have

(22) = − pns log

(
2e

n

)
− pn

2
(1 − 2s) log(1 − 2s) − γn,1ns + γn,2n

2s2 + γn,3 + o(1)

= − (p + γn,1)ns + γn,2n
2s2 + o(1),

which gives log(E[exp{hT ′/(nσn)}]) = h2/2 + μnh/σn + o(1) by s = h/(nσn).
Finally, for a general sequence {p/n}, to prove that (T ′+nμn)/(nσn) converges in distribution

to N (0, 1), it suffices to show that every subsequence has a further subsequence that converges
in distribution toN (0, 1). By the boundedness of p/n and the Bolzano–Weierstrass theorem, we
can further take a subsequence such that p/n has a limit and the arguments above can be applied.
In summary, Lemma 3 is proved. 
�

B. Supplementary Simulation Studies

B.1. Simulations on the Type I Error

In this section,we provide additional simulation studieswhen the data are not normally distributed.
Particularly, we focus on the likelihood ratio test under the null hypothesis H0,0, which detects
the existence of any factors or not.

Simulations with heavy-tailed t-distributed data. Similarly to previous simulations, we con-
sider p = 	N ε
, where N ∈ {100, 500, 1000, 2000} and ε ∈ {3/24, 4/24, . . . , 23/24}. Under
each combination of (N , p), we generate the entries of data matrix Xi as independent and iden-
tical random variables following td0 distribution, where d0 denotes the degrees of freedom, and
we take d0 ∈ {5, 10}. Then, we conduct the likelihood ratio test for H0,0 with approximations (3)
and (4). We repeat the procedure 1000 times and estimate the type I error rates with significance
level 0.05. We present the results of t5 and t10 distributed data in Figs. 5 and 6, respectively. In
each figure, we draw the estimated type I error rates versus ε values for approximations (3) and
(4) in the left and right plots, respectively. Similarly to Numerical Example 2, we can see that
the Chi-square approximation for T0 starts to fail when ε approaches 1/2, and the Chi-square
approximation for ρ0T0 starts to fail when ε approaches 2/3.

Simulations with discrete multinomial data. The simulations are conducted same as above,
except that we generate the entries in the data matrix Xi from a discrete multinomial distribution.
Specifically, for each entry xi, j within the matrix Xi , where i = 1, . . . , N and j = 1, . . . , p,
we first sample zi, j ∼ N (0, 1) and then set discrete value of xi, j according to the range of
zi, j considering three settings (I)–(III) in Table 1. The results under settings (I)–(III) are given
in Figs. 7, 8, and 9, respectively. Similarly to Numerical Example 2, under each setting, we
observe that the Chi-square approximation (3) for T0 starts to fail when ε approaches 1/2, and
the Chi-square approximation (4) for ρ0T0 starts to fail when ε approaches 2/3.

B.2. Simulations on Estimating the Number of Factors

In this section, we demonstrate the performance of estimating the number of factors using the
sequential procedure described in Sect. 2.1. In particular, we consider the simulation setting
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Figure 5.
Estimated type I error versus ε of t5-distributed data (Color figure online).

Figure 6.
Estimated type I error versus ε of t10-distributed data (Color figure online).

Table 1.
Three settings of correspondence between xi, j and zi, j .

Setting (I)

zi, j (−∞, 0) [0,∞)

xi, j −1 1

Setting (II)

zi, j (−∞, −1) [−1, 0) [0, 1) [1, ∞)

xi, j −2 −1 1 2

Setting (III)

zi, j (−∞, −1) [−1, −0.4) [−0.4, 0) [0, 0.4) [0.4, 1) [1, ∞)

xi, j −3 −2 −1 1 2 3
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Figure 7.
Discrete data (I): Estimated type I error versus ε (Color figure online).

Figure 8.
Discrete data (II): Estimated type I error versus ε (Color figure online).

Figure 9.
Discrete data (III): Estimated type I error versus ε (Color figure online).
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Figure 10.
Estimating the number of factors when k0 = 1 (Color figure online).

similar to that in Numerical Example 3, where we take the true number of factors k0 ∈ {1, 3},
sample size N ∈ {500, 1000}, and data dimension p = 	N ε
 for different ε values. When
conducting the likelihood ratio tests in the sequential procedure, the nominal significance level is
set as α = 0.05. For each combination of (k0, N ), we use the sequential procedure to estimate the
number of factors, denoted as k̂. We repeat the procedure 1000 times and estimate the proportions
of correct estimation (k̂ = k0) and overestimation (k̂ > k0), respectively. We present the results
for k0 = 1, 3 in Figs. 10 and 11, respectively, where the results based on the likelihood ratio test
without and with the Bartlett correction are given in the left and right columns, respectively.

The numerical results in Figs. 10 and 11 show that (I) using the likelihood ratio test, the
procedure begins to overestimate the number of factors when ε approaches 1/2; (II) using the
likelihood ratio test with the Bartlett correction, the procedure begins to overestimate the number
of factors when ε approaches 2/3. These observations, compared with Figs. 2, 3, and 4, suggest
that the sequential procedure begins to overestimate the number of factors when the corresponding
type I error begins to inflate, which is consistent with our discussion in Sect. 2.2. Moreover, in
Figs. 10 and 11 ,when ε is small and does not pass the corresponding phase transition boundary, the
proportion of overestimation (k̂ > k0) is around 0.05. This is because that rejecting H0,k0 suggests
k̂ > k0, and the probability of rejecting H0,k0 (type I error of testing H0,k0 ) can be asymptotically
controlled at the level α = 0.05 under the asymptotic regimes derived in Theorems 1 and 2 .
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Figure 11.
Estimating the number of factors when k0 = 3 (Color figure online).
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